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I. First-Principles Calculation Methods and Orbital-Resolved Bands 

The geometry optimization and electronic structure calculations were performed by using the first-principles 

method based on density-functional theory (DFT) with the projector-augmented-wave (PAW) formalism, as 

implemented in the Vienna ab-initio simulation package (VASP) [1]. All calculations were carried out with a plane-

wave cutoff energy of 550 eV and 12 × 12 × 1 Monkhorst-Pack grids were adopted for the first Brillouin zone 

integral. The Perdew-Burke-Ernzerhof generalized-gradient approximation (GGA) was used to describe the 

exchange and correlation functional [2]. A vacuum space of larger than 15 Å was used to avoid the interaction 

between two adjacent slabs. The convergence criterion for the total energy is 10−6 eV. The conjugated gradient 

algorithm is employed to perform the structural optimization. All the atoms in the unit cell are allowed to move 

until the Hellmann−Feynman force on each atom is smaller than 0.01 eV/Å. The lattice constants of Bi/SiC, 

BiAs/SiC and BiSb/SiC are 5.35 Å, taken from the experiments [3]. The optimized lattice constants of BiAsH2 and 

BiAsI2 are 5.07 Å and 5.08 Å, respectively. The Berry curvature, Ω(k) for the whole valence bands are calculated 

by [4]  
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where En is the eigenvalue of the Bloch functions |ψnk>, fn is the Fermi-Dirac distribution function at zero 

temperature, υx and υy are the velocity operators. The Z2 invariant was computed by tracing the Wannier charge 

centers using the non-Abelian Berry connection as implemented in the WannierTools software [5].  

 

 

Fig. S1 (a)-(e) Orbital-resolved bands without SOC for Bi/SiC, BiSb/SiC, BiAs/SiC, BiAsH
2
 and BiAsI

2
 

monolayers, respectively. 

 

The orbital-resolved bands without spin-orbit coupling (SOC) of Bi/SiC, BiAs/SiC, BiSb/SiC, BiAsH2, and BiAsI2 

are shown in Fig. S1, where we can clearly see all their bands near the Fermi level are dominated by the px and py 

orbitals of Bi, Sb, or As atoms, indicating their low energy electronic structures and topological properties can be 

well described by our tight-binding (TB) model based on px and py basis. By fitting the TB model with DFT 

calculated bands, the intrinsic SOC and staggered potential (λSO, U) for Bi/SiC, BiAs/SiC, BiSb/SiC, BiAsH2, and 

BiAsI2 are obtained as (0.44 eV, 0 eV), (0.24 eV, 0.38 eV), (0.30 eV, 0.26 eV), (0.35 eV, 0.37 eV), and (0.44 eV, 

0.41 eV), respectively. 
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II. Conductance Calculations 

The conductance of the quantum spin Hall (QSH), quantum-valley Hall kink (QVHK), and quantum-spin-valley 

Hall kink (QSVHK) states are calculated by employing a two-terminal Landauer-Büttiker formalism based on the 

Green function technique [6]  
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where 𝐺r(a) is the retarded (advanced) Green function of the central scattering region, as shown in Fig. S2(a). The 

terminals are assumed the same as the central region in the absence of disorder. The quantities 
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i     are the linewidth functions describing the coupling between the left (right) terminal and the 

central scattering region, where Σr(a) is the retarded (advanced) self-energy due to the L(R) semi-infinite lead, and 

can be numerically obtained via a transfer matrix method [7].  

 

 

Fig. S2 (a) Two-terminal model for conductance calculations. (b)-(c) The schematic (top) and calculated bands 

(bottom) for QSH, QVHK and QSVHK states, respectively. The parameters (λSO, U) of (0.44 eV, 0 eV), (0.24 eV, 

0.38 eV) and (0.24 eV, -0.38 eV) obtained from Bi/SiC, BiAs/SiC, and AsBi/SiC, are used for QSH, QVH (CV=1), 

and QVH (CV=-1) regions, respectively. The length (l) and width (w) of the scattering region are 100 and 200 unit 

cells, corresponding to 46 nm and 92 nm, respectively. The hopping parameter t1,2 is set to be 1eV. 

For the QSH states, the conductance calculations are based on the bands of Bi/SiC in Fig. S2(b). For QVHK states, 

we construct a BiAs-AsBi/SiC junction with Cv = 1 (-1) in the BiAs/SiC (AsBi/SiC) region, where the spin-

degenerate kink states appear along the interface as shown in Fig. S2(c). The conductance of the QSVHK states is 

calculated based on the BiAs-Bi-BiAs/SiC junction as shown in Fig. S2(d). The Fermi level, EF is 0 in all 

conductance calculations. The disorder is added in the scattering region (See details in Sec. IV). For each value of 

the disorder strength, 200 disorder configurations are averaged. 
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III. Rashba Spin-Orbit Coupling 

Considering Rashba SOC can be induced into bismuthene by the SiC substrate [3], here we explore its influence 

on QSVHK states. The Rashba SOC in Bi/SiC is described by HR based on a TB model in the basis of px and py 

orbitals with [3, 8, 9]  
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Here, ci represents the annihilation operator on site i. TRδ describes the nearest hopping from site i to i + δj, which 

is induced by the extrinsic Rashba SOC from the SiC substrate with 
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where z = exp(2iπ/3), λR and λ’R reflect the Rashba SOC strength with λ’R = λRt2/t1, and s indicates the Pauli matrices 

acting on the spin space. By fitting the TB bands including Rashba SOC with DFT calculated bands [Fig. 3], we 

obtain λR of 30 meV for Bi/SiC, which is consistent with the previous work [3]. Similarly, λR of 28 meV is obtained 

for BiAs/SiC system.  

 

Fig. S3 (a) - (e) same as Figs. 2 (a) - (e), but with Rashba SOC of λR = 30 meV, respectively. 

Since Rashba SOC does not change the valley-inversion symmetry (VIS) and time-reversal symmetry (TRS), and 

its strength λR is much smaller compared to U and λSO in the BiAs-Bi/SiC system, it is expected the Rashba SOC 

does not affect much the results. Indeed, as shown in Figs. S3(a) and (b), the bands with Rashba SOC are nearly 

the same as the corresponding bands without Rashba SOC [Figs. 2(a) and (b)]. Furthermore, there is no obvious 

difference between the QSVHK conductance with and without Rashba SOC in the presence of disorder, as shown 

in Figs. S3(c)-(e) compared to those in Figs. 2(c)-(e). Specifically, the conductance of QSVHK states remain 

quantized against the nonmagnetic Anderson disorder and magnetic long-range disorder with the consideration of 

Rashba SOC. Thus, it is reasonable to neglect the influence of Rashba SOC in QSVHK states for BiAs-Bi/SiC 

system. 
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IV. Influence and Crossover of the Short-Range and Long-Range Disorder 

For valley-related transport, the influence of the short- and long-range disorder is usually significantly different 

since the former (later) induces (excludes) intervalley scattering, which has been well explored in graphene [10]. 

The short (long)-range disorder is characterized by the smaller (larger) disorder correlation length, λ, compared to 

the lattice spacing, a [10, 11]. Their crossover can be well described by a Gaussian correlated disorder potential of 

𝜂(𝑟) = 𝜔𝑒
−𝑟2/𝜆2 

   , where ω parametrizes the disorder strength [10, 11]. Specifically, for a short-range disorder, 

usually induced by the point defects [10], its disorder potential localizes in the atomic range (λ < a) and the induced 

intervalley scattering enables strong backscattering, eventually turning the conducting system into an Anderson 

insulator. Such a short-range disorder is also called Anderson disorder, when λ → 0 [10, 11]. In contrast, for a long-

range disorder, often arising from the charged impurities or ripples [10], its disorder potential is smooth on the scale 

of the lattice spacing (λ > a) and there is very little intervalley scattering. As a result, the back scattering is 

suppressed and the system remains highly conductive [10, 11]. 

 

Fig. S4. (a) An example of a realization of the η(r) in 2D system. (b) Conductance, G, as a function of the correlation 

length, λ, for the QVHK and QSVHK states with η(r) as in (a), where the disorder probability P = 15% and the 

disorder strength WND = 0.5 eV. (c) Same as (b) but for QVHK with various P. In conductance calculations, the 

width (w) and length (l) of the scattering region are 120 and 2000 unit cells, respectively. Other parameters are 

taken from Fig. S2. 

To explore the influence of the short-range and long-range disorder in our proposed QSVHK states, we add a 

nonmagnetic disorder term [12] 0
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 , where |rij| is the distance between site i and j, Np is the total number of the scattering 

centers, which, dividing the total number (N) of the lattice sites, gives the disorder probability, P = Np/N. Figure 

S4(a) shows the realization of the η(ri). For the short-range disorder, we consider the Anderson disorder (λ = 0) 

with P = 100%, where ωj is randomly distributed in [−WNA, WNA] with WNA the nonmagnetic Anderson disorder 

strength. By employing Landauer-Büttiker formalism with the Green function technique in a two-terminal model 

as in Fig. S2, we calculate the QSVHK conductance, G, as a function of WNA shown in Fig. 2(c) in the Main Text. 

For comparison, we also calculate G(WNA) of QVHK states there. Since QVHK states require the absence of the 

intervalley scattering, it can only be robust against the long-range disorder. When there exists a short-range disorder, 

the valley inversion symmetry is broken and the intervalley scattering is easily induced. Thus, its conductance 

decreases from the quantization as shown in Fig. 2(c). For our proposed QSVHK, because of the additional 

protection from the QSH, it is not influenced by the intervalley scattering and thus remains robust against 

nonmagnetic short-range disorder [Fig. 2(c)].  
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To explore the crossover of the short-range and long-range disorder in the QSVHK, we induce the magnetic 

short/long-range disorder [13] to break the TRS and thus validating the intervalley scattering in the QSVHK. When 

the TRS is broken, the QSVHK degrades into the QVHK, and then it is expected to be robust against the magnetic 

long-range disorder, but can be intervalley-scattered by the magnetic short-range disorder. The magnetic disorder 

is induced by adding an in-plane magnetic exchange filed 
1 1

1 1
MD i i x ii

H c c   
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 
 to Eq. (1). Similar to that 

in nonmagnetic case, for the short-range disorder, we consider the magnetic Anderson disorder (λ = 0 and P = 100%) 

with WMA the magnetic Anderson disorder strength. While for the magnetic long-range disorder, we consider λ = 

7a and P = 1% with WLM the magnetic long-range disorder strength. Through the conductance calculations, we find 

the QSVHK conductance remains quantized with WLM [Fig. 2(d)], but decreases with WMA [Fig. 2(e)], consistent 

with our expectations. 

 

It is generally accepted that the critical disorder correlation length, λc ~ a, separates the short- and long-range 

disorder [10]. However, for a specific system, λc may also be related to the electronic structures of the system and 

the details of the disorder, including its strength and concentration. To identify the λc in our proposed bismuthene 

system, we calculate the QVHK conductance in the presence of the nonmagnetic disorder η(ri) with various λ as 

shown in Fig. S4(b), where the η is randomly distributed in [−WNA, WNA] with WNA the nonmagnetic disorder 

strength. We can see that for λ < 2a, G < 2e2/h, indicating there is a finite intervalley scattering, while for λ > 2a, 

the conductance is quantized due to the vanishing intervalley scattering. Thus, λc is about 2a in bismuthene system 

with P = 15% and WND = 0.5 eV. λc is slightly increased when P increases, as shown in Fig. S4(c). This can be 

readily understood since the larger P enhances the possibility of the intervalley scattering, thus requiring a larger λc 

to compensate it. 
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V. Influence of the Interface Configuration 

Based on the analysis of the topological charge, the QSVHK emerges as long as the topological indexes (Z2 and Cv) 

change across the interface. Thus, the QSVHK is expected to be insensitive to the detailed interface configurations, 

reflecting its topological nature and protection. To clearly show such robustness against the interface configurations, 

we consider various interface situations discussed as follows, including the gradual interface, curved interface and 

the interfacial defects. 

 

Influence of the gradual interface. In the Main Text, we assume that the QSH-QVH interface is very sharp, where 

the parameters (λSO, U) change as a step function. However, in experiments, because of the atom mixing, the 

interface may not be as sharp but instead form a domain wall (DW) with a finite width (wD) as shown in Fig. S5(a). 

Such a DW can be described by a smooth change of the parameters, taking, for example, cosine change as shown 

in Figs. S5(b) and (c). Figures S5(d)-(f) show the calculated bands of the QVH-QSH-QVH junctions with various 

wD. We can see their bands are quite similar and the QSVHK emerges in all cases, regardless of the DW width. 

However, the localization length of the QSVHK increases as wD increases, as shown in the calculated spatial local 

density of the states (LDOS) of the QSVHK in Fig. S5(g), reflecting the DW character. Since the energy spectra 

are similar for various wD, it is expected they also show similar transport properties. To verify this, we calculate 

their conductances based on a two-terminal model [Fig. S5(a)]. As shown in Fig. S5(h), in the clean limit, the 

conductance is large outside the bulk gap, while it equals to 2e2/h within the gap. Such quantized conductance 

originates from the QSVHK. Similar G(E) trends for various wD indicate the transport properties of the QSVHK do 

not depend on the DW width. 

 

 

Fig. S5 (a) Two-terminal model for conductance calculations of the QVH-QSH-QVH junctions with domain walls, 

where wV, wS, and wD indicate the width of the QVH region, QSH region, and domain wall (marked by the white 

dashed rectangle), respectively. (b) and (c) The parameters of (λSO, U) change from the QVH region to the QSH 

region as λSO = 
λ1+ λ2

2
 + 

λ1− λ2

2
  cos(

𝑦−𝑦𝐿,𝑅+𝑤𝐷

2𝑤𝐷
π) and U = 

U1+ U2

2
 + 

U1− U2

2
cos(

𝑦−𝑦𝐿,𝑅+𝑤𝐷

2𝑤𝐷
π) with yL,R  - wD < 

y  < yL,R  + wD, where yL =50 (yR=150) are the center of the left (right) domain walls, λ1,2 and U1,2 are the intrinsic 

SOC and staggered potential for the QVH and QSH region, taken from the BiAs/SiC and Bi/SiC, respectively. The 

wV  = 50 - wD/2 and wS = 100 - wD. (d) - (f) Bands for the scattering region in (a) with wD = 0, 20, 40 unit cells, 

respectively. (g) Spatial local density of states (LDOS) for the bands at EF for (d)-(f). (h) Conductance, G, as a 

function of the energy E with various wD for the setup in (a). The l is infinite in band calculations while l =200 unit 

cells for conductance calculations. Other parameters are taken from Fig. S2 in SM. 
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Influence of the curved interface. Besides the DW width, the shape of the interface is another important interfacial 

property. Based on the topological analysis and index theorem, it is expected that the QSVHK states emerge exactly 

along the interface, regardless of its shape. To illustrate this, we design a curved QSH-QVH interface with sine 

feature as an example, as shown in Fig. S6(a). The calculated LDOS [Fig. S6(b)] show that the QSVHK exactly 

flows along the physical interface. Based on similar transport calculations as in Fig. S5, the obtained conductance 

of the curved interface [Fig. S6(c)] is found to be similar to that of the straight one [Fig. S5(h)]. Especially, the 

quantized conductance within the gap clearly demonstrates that QSVHK emerges in the curved boundary and its 

transport properties are insensitive to the shape of the interface. 

 
Fig. S6 (a) Schematic of QVH-QSH-QVH junctions with curved interface of 20[1-cos(6πx/l)]. (b) Spatial LDOS at 

EF for the spectrum of (a). (c) Conductance, G, as a function of E for (a) with l = 2wS = 4wV = 200 unit cells. The 

parameters are taken from Fig. S5. 

 

Influence of the interfacial defects. Considering the defects can be created around the interface when fabricating 

the junctions, here we explore the influence of the defects in QSVHK states. As we demonstrated in the Main Text, 

our proposed QSVHK states are topologically protected by both the valley-inversion and time reversal symmetries. 

As long as these two symmetries are not simultaneously broken, the QSVHK states can remain robust. As 

topological states, they are highly robust against the local defects and disorder. Considering the defects in the 

interface are locally distributed and cannot break the time-reversal symmetry [14, 15], the QSVHK states are 

expected to be robust against such defects. Encouragingly, a recent study shows even for global defects the quantum 

spin Hall (QSH) states in bismuthene remain robust when the defect concentration is lower than 17% [15]. Since 

our proposed QSVHK states are more robust than the QSH states because of the additional protection from the 

valley-inversion symmetry, the QSVHK states are expected to be robust against the defects. 

 
Fig. S7 (a) Schematic of QVH-QSH-QVH junctions with defects marked by the circles around the interface, where 

the defects are created by randomly removing the atoms in the black dashed rectangle regions with the width wD = 

15 unit cells. The concentration of the defects, P, is defined by the number of the removed atoms over the total 

number of the atoms in the black dashed rectangle regions. (b) The schematic of the atomic structures with defects 

for the zoom-in of the area marked by the blue circle in (a). (c) Conductance, G, as a function of E for (a) with 

various P based on the two-terminal model (Fig. S5), where l = 2wS = 4wV = 200 unit cells. The other parameters 

are taken from Fig. S5. 
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To check our expectations, we create the defects by randomly removing the atoms around the QSH-QVH interface 

as shown in Figs. S7(a)-(b). Based on similar transport calculations as in Fig. S5, we calculate the conductance, G, 

as a function of E for (a) with various defect concentrations as shown in Fig. S7(c). We can see the calculated 

conductance of the junction with finite defect concentrations (P > 0) is similar to that with P = 0. Specifically, the 

conductance within the gap remain quantized even when P is up to 30%, clearly demonstrating the QSVHK states 

are robust against the defects, consistent with our analysis based on the symmetry protections. Such a robustness 

against the defects additionally facilitates the experimental realization and observation of the QSVHK states. 
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VI. Influence of the Temperature 

For applications of topological states, one key point is that the bulk gap, Δ, remains open, which provides a 

topological protection for the ballistic transport. However, as commonly expected, the temperature-induced thermal 

excitation can reduce Δ. A common estimate is that the gap remains open when temperature T < Δ/kB. For room-

temperature applications (300 K), the Δ is required to be larger than 26 meV. Since in our proposed BiAs-Bi/SiC 

junction Δ ~ 287 meV is 10 times larger than 26 meV, it is reasonable to expect that the QSVHK states in BiAs-

Bi/SiC junction can be used at room temperature.  

In transport calculations, temperature effects can be simulated by using the Fermi-Dirac distribution function, 𝑓 =

1/[1 + exp (
𝐸−𝐸𝐹

𝑘𝐵𝑇
)], in the conductance calculations, written as [6] 

𝐺 =
2𝑒2

ℎ
∫ 𝑇̅(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸, 

where 𝑇̅(𝐸) is the transmission coefficient. The calculated temperature-dependent conductance is shown in Fig. 

S8. We can see the energy range supporting quantized conductance decreases as T increases, reflecting the expected 

temperature influence. However, when T = 300 K, there is still a visible range of energy supporting ballistic 

transport, showing a support for the feasibility of the room-temperature applications. 

 

Fig. S8 Temperature-dependent conductance of the QVH-QSH-QVH junction [Fig. S5(a)] as a function of the 

energy. The parameters are taken from Fig. S5. 

The above discussion is based on a single-particle picture, while the electron-electron (e-e) and electron-phonon 

(e-p) interactions may play important roles at high temperature. Such many-body effects have actually been widely 

explored in topological states, especially in the QSH system [14]. Since both e-e and e-p interactions induce 

intervalley scattering [16, 17], the VIS protection for QSVHK states becomes invalid. As a result, the QSVHK 

degrades into the QSH, which is expected to have a similar behavior as QSH states under electron-electron (e-e) or 

electron-phonon (e-p) interactions. 

For an e-p interaction, since it does not induce spin mixing, the QSH states remain robust when TRS is preserved 

[17]. For an e-e interaction, it can induce the back scattering in the QSVHK states because both spin and intervalley 

scattering are allowed even with TRS [14]. However, when the e-e interaction is weak, the QSH states can still 

remain stable [16, 17]. In typical topological materials (instead of correlated materials), the e-e interactions are 

usually very weak even at a high temperature [14]. Thus, such many-body interactions have little influence in the 

QSH states. Besides, the QSH states were detected at 77 K in bismuthene, which is expected to support QSH at 

room temperature [3]. Since our proposed QSVHK states in BiAs-Bi junction not only share the QSH properties of 

bismuthene, but also possess an extra protection from the valley-inversion symmetry, it may be reasonable to expect 

that QSVHK states can survive at room temperature. 
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VII. Experimental Fabrication 

Since the single bismuthene/antimonene/arsenene and their binary films (BiSb and BiAs) have been fabricated [18-

19], their planar junctions can be created using our well-established molecular beam epitaxy (MBE) selective area 

growth and stencil lithography [20]. Specifically, the junction fabrication can be realized in two main steps.  

 

Fig. S9 (a) False color scanning electron micrograph (SEM) image of the planar BiSb-Bi-BiSb junction with a 

Si3N4 stencil mask situated 300 nm above the film for shadowing. (b) The zoom-in of the area marked by the white 

rectangle in (a), where the BiSb-Bi interfaces are marked by the red rectangle. 

 

I. Fabricating the Si3N4 stencil mask for shadowing. Following the process established in our previous work [20], 

300 nm of SiO2 and 100 nm of Si3N4 are deposited on a Si (111) substrate via low-pressure chemical vapor 

deposition (LPCVD). Using electron beam lithography and reactive ion etching, a thin Si3N4 stripe as shown in Fig. 

S9(a) is prepared. Via a following dip into 1% hydrofluoric acid, the SiO2 under the stripe is etched and the Si3N4 

bridge is released to create a freestanding bridge. The sample is then transferred into an MBE chamber where it is 

heated to 700°C to desorb the hydrogen surface passivation. II. Spatially-selective growing the BiSb and Bi films. 

The Bi and Sb are evaporated respectively from standard Knudsen effusion cells at 530°C and 475°C and deposited 

simultaneously onto the substrate at a growth temperature of 40°C, similar to the recipe in [21] but without rotating 

the substrate. The stoichiometry of Bi and Sb can be flexibly controlled by adjusting the fluxes and growth 

temperature [21]. Since the Bi and Sb molecular beams have high directionality and reach the substrate from 

different directions, in the shadow cast by the bridge for each beam respectively only the other element is deposited. 

With the substrate in a well-defined orientation to the stencil bridge with respect to the Sb source, the BiSb film is 

grown on the substrate, except for the narrow strip [brown in Fig. S9(a)] shaded by the bridge where only pure Bi 

film is grown. In this way, a planar BiSb-Bi-BiSb junction is created as shown in Fig. S9(b). The desired BiAs-Bi-

BiAs junction can also be fabricated using a similar method. 

 

 

Fig. S10 Schematic of the fabrication of the multiple BiAsH2-BiAsI2 junctions with hydrogen and iodine 

depositions in (a) and (b). 
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Relying on the similar techniques, we propose a protocol to fabricate multiple BiAsH2-BiAsI2 junctions based on 

the fabricated BiAs film as shown in Fig. S10. First, one can attach several shadow masks on the BiAs film and 

deposit H atoms. Because of the shadow shields, these H atoms are only deposited on the uncovered regions, 

bonding with the unsaturated pz orbitals of the Bi/As atoms and forming BiAsH2, as shown in Fig. S10(a). Next, 

one would remove the shadow masks and deposit the iodine atoms. Since the BiAsH2 regions have been already 

passivated by the H atoms, the I atoms can only bond with the Bi/As atoms in the non-hydrogentated regions, 

forming the multiple BiAsH2/BiAsI2 junctions as shown in Fig. S10(b). Such techniques have been widely used in 

chemistry surface functionalization [18, 19].  

VIII. Influence of the Stoichiometry 

 

Since the stoichiometry control is crucial for growing binary-element film using MBE, it is important to explore 

how the stoichiometry affects the electronic and topological properties of the BiAs films. The two key factors in 

our proposal are the intrinsic SOC, λSO, and the staggered potential, U, which are both related to the stoichiometry. 

Thus, it is expected that the stoichiometry plays a significant role.  

 

Fig. S11 (a)-(h) Atomic structures of the 2×2 BiAs/SiC supercells with As concentrations from 1/8 to 8/8. 

To simulate the influence of the stoichiometry, we created larger 2×2 BiAs/SiC supercells with 1 to 8 As atoms, 

giving the As-concentration, ρAs, from 1/8 to 8/8, as shown in Fig. S11. The corresponding electronic structures are 

shown in Figs. S12(b)-(g). By fitting the effective model with such DFT results, the λSO and U for different ρAs are 

plotted in Fig. S12(a). We can see the λSO decreases almost linearly with the ρAs. This is expected since the SOC of 

As is smaller than that of Bi and the more (less) As (Bi) atoms, the smaller (larger) λSO is in the BiAs film. For U, 

Bi4As4 gives the maximum U. This can be readily understood since the U indicates the onsite energy difference 

between the A and B sublattices and the biggest difference emerges when all As (Bi) atoms are at the A (B) sublattice 

sites, forming the Bi4As4 as shown in Fig. S11(d). When some sites of the A (B) sublattice are occupied by the Bi 

(As) atoms, the U decreases, as in Fig. S12(a). Furthermore, the U vanishes when all sites host the same Bi or As 

atoms. Such As concentration-dependent competition between U and λSO determines the gap and topological phase 

of the BiAs film. Specifically, when 3/8 < ρAs < 6/8, U > λSO, giving the QVH phase. Otherwise, U < λSO, giving the 

QSH phase as shown in Fig. S12(a). Therefore, to get the QSVHK states, the MBE stoichiometry of As:Bi should 

be controlled in the range from 3:5 to 6:2. Such a large parameter range gives a considerable flexibility for 

experimental realization of our proposal. In addition to the MBE growth, the BiAs film can also be fabricated from 

bulk BiAs crystal using exfoliation [18, 19], which may avoid the concern about the stoichiometry control.  
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Fig. S12 (a) The As concentration-dependent intrinsic SOC, λSO, staggered potential, U, and the band gap obtained 

from the band structures [(b)-(g)] of the corresponding structures in Fig. S11.  

The fabricated BiSb-Bi junction and the discussions about the influence of stoichiometry show that our proposed 

BiAs-Bi junction to realize QSVHK state is promising. The QSVHK states are insensitive to the interface 

configurations and robust against different nonmagnetic and long-range disorder because of the topological 

protection. Furthermore, the finite-temperature calculations show the conductance of the QSVHK states remains 

quantized above room temperature. Taken together, such a strong robustness facilitates the experimental 

observation of QSVHK states and offers new opportunities in valleytronics and spintronics. 
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